Uniqueness of Translation Invariant Norms

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniqueness of Dilation Invariant Norms

Let δa be a nontrivial dilation. We show that every complete norm ‖ · ‖ on L1(RN ) that makes δa from (L1(RN ), ‖ · ‖) into itself continuous is equivalent to ‖ · ‖1. δa also determines the norm of both C0(R ) and Lp(RN ) with 1 < p < ∞ in a weaker sense. Furthermore, we show that even all the dilations do not determine the norm on L∞(RN ).

متن کامل

On a Metric on Translation Invariant Spaces

In this paper we de ne a metric on the collection of all translation invarinat spaces on a locally compact abelian group and we study some properties of the metric space.

متن کامل

Translation invariant mappings on KPC-hypergroups

In this paper, we give an extension of the Wendel's theorem on KPC-hypergroups. We also show that every translation invariant mapping is corresponding with a unique positive measure on the KPC-hypergroup.

متن کامل

Reparametrization Invariant Norms

This paper explores the concept of reparametrization invariant norm (RPI-norm) for C1-functions that vanish at −∞ and whose derivative has compact support, such as C1 c -functions. An RPI-norm is any norm invariant under composition with orientation-preserving diffeomorphisms. The L∞-norm and the total variation norm are well-known instances of RPI-norms. We prove the existence of an infinite f...

متن کامل

Translation Invariant Approach for Measuring Similarity of Signals

In many signal processing applications, an appropriate measure to compare two signals plays a fundamental role in both implementing the algorithm and evaluating its performance. Several techniques have been introduced in literature as similarity measures. However, the existing measures are often either impractical for some applications or they have unsatisfactory results in some other applicati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2000

ISSN: 0022-1236

DOI: 10.1006/jfan.2000.3593